skip to main content


Search for: All records

Creators/Authors contains: "Hooper, Richard P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    The Panola Mountain Research Watershed (PMRW) is a 41‐hectare forested catchment within the Piedmont Province of the Southeastern United States. Observations, experimentation, and numerical modelling have been conducted at Panola over the past 35 years. But to date, these studies have not been fully incorporated into a more comprehensive synthesis. Here we describe the evolving perceptual understanding of streamflow generation mechanisms at the PMRW. We show how the long‐term study has enabled insights that were initially unforeseen but are also unachievable in short‐term studies. In particular, we discuss how the accumulation of field evidence, detailed site characterization, and modelling enabled a priori hypotheses to be formed, later rejected, and then further refined through repeated field campaigns. The extensive characterization of the soil and bedrock provided robust process insights not otherwise achievable from hydrometric measurements and numerical modelling alone. We focus on two major aspects of streamflow generation: the role of hillslopes (and their connection to the riparian zone) and the role of catchment storage in controlling fluxes and transit times of water in the catchment. Finally, we present location‐independent hypotheses based on our findings at PMRW and suggest ways to assess the representativeness of PMRW in the broader context of headwater watersheds.

     
    more » « less
  3. Abstract

    Many have argued that datasets resulting from scientific research should be part of the scholarly record as first class research products. Data sharing mandates from funding agencies and scientific journal publishers along with calls from the scientific community to better support transparency and reproducibility of scientific research have increased demand for tools and support for publishing datasets. Hydrology domain‐specific data publication services have been developed alongside more general purpose and even commercial data repositories. Prominent among these are the Hydrologic Information System (HIS) and HydroShare repositories developed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). More broadly, however, multiple organizations have been involved in the practice of data publication in the hydrology domain, each having different roles that have shaped data publication and reuse. Bibliographic and archival approaches to data publication have been advanced, but both have limitations with respect to hydrologic data. Specific recommendations for improving data publication infrastructure, support, and practices to move beyond existing limitations and enable more effective data publication in support of scientific research in the hydrology domain include: improving support for journal article‐based data access and data citation, considering the workflow for data publication, enhancing support for reproducible science, encouraging publication of curated reference data collections, advancing interoperability standards for sharing data and metadata among repositories, developing partnerships with university libraries offering data services, and developing more specific data management plans. While presented in the context of CUAHSI's data repositories and experience, these recommendations are broadly applicable to other domains.

    This article is categorized under:

    Science of Water > Methods

     
    more » « less